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Abstract— Global emergencies such as epidemics present 

immense governance challenges to national, political and oper-

ational decision-makers. Modelling and Simulation has been 

identified as a crucial force multiplier in the development and 

implementation of preparedness and response measures for 

epidemics and pandemics outbreaks. Recent years have wit-

nessed an explosion in modelling and simulation tools for this 

domain while emerging technologies such as IoT and remote 

sensing enable data collection as an unprecedented scale. How-

ever fragmentation and siloing of these efforts hamper their 

effectiveness.   This paper argues that the complexity and scale 

of the challenge calls for an integrated “Big Modelling” ap-

proach which would bring all the different elements together to 

enable a holistic view and analysis and outlines a computation 

framework that can act as a catalyst in this direction. 
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I. INTRODUCTION  

Governance of global emergencies is one of the Grand Chal-

lenges society faces. The stages and required actions in the 

event of an emergency are outlined in a 2006 report by At-

kinson et. al, commissioned by the EU [1].  Keeping the 

user central, the report details the processes of identifying 

and understanding the amalgamation of users, processes, 

services, existing tools and the data required to firstly miti-

gate and secondly to manage a disaster (conceptualised in 

the Disaster Risk Management Life Cycle shown in Figure 

1). Amongst global emergencies, epidemics and pandemics 

are the most critical for national, political and operational 

decision-makers. 

The threat epidemics and pandemics entail, be it naturally-

occurring, accidental and deliberate, can be illustrated from 

the not too distant history by the devastation the 1918-20 

Influenza Pandemic brought about, leaving behind 500 mil-

lion people infected and 50-100 million dead. Expressed in 

today’s population numbers that would mean 2.5 billion 

people infected and 250-500 million dead. While by some 

estimates it was more devastating than World War I (with a 

tragic death toll of 60 million people), unlike WWI, the 

Spanish Flu has been conspicuously missing from collective 

memory and conscience rituals.  

A more contemporary naturally-occurring disease reference 

point is the 2013-2016 West Africa Ebola epidemic.  Au-

thoritative assessment reviews like the Report of the Ebola 

Interim Assessment Panel [1] and the Harvard-LSHTM In-

dependent Panel on the Global Response to Ebola [3] have 

identified important preparedness, response and recovery 

flaws in the performance national and international institu-

tions displayed (Figure 4). Among governance problems 

identified was the functioning of the UN Mission for Emer-

gency Ebola Response (UNMEER). In essence, UNMEER’s 

governance inadequacy [4] can be summarized conversely 

as “The whole is less than the sum of the parts” [sic] and 

that is an important indicator of Complex Adaptive Sys-

tems-type of behavior. 

Ebola did not leave much time for implementing the 2013-

2016 West Africa lessons learned [5]. In light of the 2018 

outbreak of Ebola in the North Kivu Province of the Demo-

cratic Republic of the Congo (DRC) the recurring questions 

are: “what progress has been made” and “where the chal-

lenges remain in preparedness, response and recovery”?  
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Figure 1: European Commission Lifecycle for Disas-

ter Risk Management Cycle [1]. 

 



Three progress-highlights are worth mentioning: (a) availa-

bility of Ebola vaccine candidates; (b) ICT applications on 

vaccination status of individuals and spatial vaccination 

information; and (c) traction in implementing the WHO 

2005 International Health Regulations (IHR) through the 

2016 launch of the Joint External Evaluation Tool to meas-

ure and baseline the country-specific preparedness and re-

sponse status [6].  

Conversely, three challenge-lowlights should be empha-

sized: (a) lack of focused global political and public health 

attention; (b) inadequate financial and human resources; and 

(c) the complex security situation in the DRC provinces 

generating further potential dwindling of human resources. 

In light of the persisting and new challenges it is clear that 

force multipliers are needed, both for the present DRC Ebo-

la epidemic and for future epidemics in order to prevent the 

wrong epidemic dynamics recurring again, as it had hap-

pened by autumn 2014 in the West Africa Ebola epidemic.  

As a promising force multiplier WHO identified simulation 

exercises as a key component in the validation of core ca-

pacities under the IHR monitoring and evaluation frame-

work (2016) and in identifying the strengths and gaps in the 

development and implementation of preparedness and re-

sponse measures [7]. 

In its 2015 report “Managing the Risk and Impact of Future 

Epidemics” the World Economic Forum invoked technology 

creators along with other public-private partnership players 

to develop not just innovative data management software 

and hardware, but required standardisation mechanisms and 

identification of “must have” priorities [8].  In a parallel 

development, the European Union has sponsored a chal-

lenge on early warning for epidemics with 5M Euro prize in 

2018 [19] (a smaller scale initiative was undertaken by the 

US CDC in 2013: the Influenza prediction challenge [18]).  

Epidemic spread has emerged as a central domain in the 

field of complex systems that study the connectivity patterns 

of real-world networks and the emergent properties and be-

havior of dynamical processes. As a result, it has attracted 

substantial interest from the modelling and simulation 

community.   

However these efforts tend to be ad hoc and fragmented 

with no real coordination. Siloed approaches to modelling 

isolated processes and phenomena at fixed macro-scales are 

not sufficient to understand the dynamics of complex heter-

ogeneous systems such as epidemics. Instead, what is need-

ed to understand the overall system dynamics, gain insights 

and develop the required predictive capacity is the consider-

ation and modelling of the full context and the entire set of 

actors and factors whose interplay at finer spatio-temporal 

scales gives birth to the overall system dynamics.  This inte-

gration and coupling should involve a range of models, in-

cluding bio physical processes, agent-based models of popu-

lations, infrastructure models, atmospheric, climate and 

weather models, earth processes etc. Indicatively, insuffi-

ciently holistic modelling in the 2013-2016 West Africa 

Ebola epidemic resulted in the predicted need for hundreds 

of treatment beds: Britain alone committed to building 700 

beds in bespoke treatment centres built by the British Ar-

my’s Corps of Royal Engineers [61]. Many Ebola treatment 

centres received few if any patients, and the financial costs 

and time burden of facility construction took resources and 

focus away from more tried and true containment methods, 

such as the efficient identification and isolation of cases, 

effective contact tracing, and robust community engagement 

to underlie these activities [59]. 

In addition to contextual analytics, the value-added an inte-

grated approach to modelling and simulation could provide 

stems from the need to be able to reconfigure modelling & 

simulation inputs and outputs. Each epidemic creates a new 

mix of challenges:  

 new or different subcontinent, or new countries, or 

new country regions; 

 new or different environment: rural vs. urban, high-

density vs. low density; 

 new or different transportation patterns; 

 new or different inflow and outflow patterns, migra-

tion, refugees; 

 new or different security environment.  

Depending on disease virulence and the scale of an epidem-

ic, and in particular the ways in which an epidemic can 

stress and threaten community and political structures, these 

challenges may also change quickly and significantly over 

the course of any one outbreak. 

A new challenge configuration thus requires the ability to 

aggregate, disaggregate, re-aggregate, mix and remix mod-

elling and simulation inputs and outputs prior to and as a 

process throughout the course of an outbreak. Agent-Based 

models are more suitable to capture and represent such het-

erogeneity and disaggregation.  

Due to each epidemic posing a new mix of challenges, each 

epidemic necessitates a new mix of intervention or an ad-

justed intervention configuration. The 2018- North Kivu 

DRC Ebola epidemic is not a ‘standard’ naturally occurring 

disease outbreak, but one in a highly insecure environment, 

with Ebola response staff and infrastructure being directly 

and regularly targeted in the outbreak’s epicentre. For in-

stance, a recently announced alliance between the local ter-

rorist group Allied Democratic Forces (ADF) and the Islam-

ic State would only serve to exacerbate risks to Ebola re-

sponders and response activities. By comparison it is a mu-

tatis mutandis combination of the 2013-16 West Africa Ebo-

la epidemic and the 2013-18 Syria chemical weapons’ use 

situation. It calls for a different mix of IGO, NGO, plurilat-

 

Figure 2: Preparedness, Response and Recovery Dur-

ing the Ebola Outbreak, 2013-2016 [9]. 

 



eral, bilateral and national intervention. It also invokes co-

operation across boundaries of different types of diseases, 

disciplines, types of intervention and organisations. A 

whole-of-society problem requires a whole-of-government 

response. Again, that raises the need and ability to aggre-

gate, disaggregate, re-aggregate, mix and remix modelling 

and simulation inputs and outputs, including those not nor-

mally anticipated or considered in standard epidemiological 

analyses. 

This paper aspires to conceptualise the need for an integrat-

ed approach to modelling and simulation that can improve 

the situational awareness of and the state of interventions in 

epidemics representing a global challenge. It does this by 

proposing a computational framework that link together the 

different elements of this fragmented landscape and support 

a holistic approach to decision making. The paper coins the 

term “Big Modelling” to describe such large-scale ecosys-

tems of models, simulations and data, as well as the term 

“Big Model Platform” referring to the platform as an em-

bodiment of the framework. Big Modelling invokes a new 

framework since the challenges well exceed the capabilities 

of conventional analytics approaches and call for an inter-

mingling of scalable data infrastructures and analytics with 

multi-scale, distributed and agent based simulations engines 

for the creation of digital twins (Big Model Twins) at a very 

large scale. 

The rest of the paper is organized as follows: Section II dis-

cusses the different elements and actors in epidemics model-

ling and summarizes the gaps along four different dimen-

sions: stakeholders, data, simulation modelling and stand-

ardisation. Section III outlines a computation framework 

that can act as a catalyst for integration and holistic decision 

support. Section IV epitomizes the conclusions and presents 

some ideas for future directions. 

II. TOWARDS A HOLISTIC APPROACH 

As we are shifting from the “Information Age” to the “Intel-

ligent Age”, with the physical and digital worlds rapidly 

merging, we are dealing with extreme scale complex socio-

technical systems where devices, networks, models, data, 

services, applications and humans are entangled and inter-

connected. Such systems are associated with the emergent 

concept of "interaction society" in which the focus of socie-

tal issues is increasingly driven by massive and mostly non-

hierarchical interactions between individuals and organisa-

tions at different levels, whether local, regional, national or 

fully global. As in other areas of industry and society, intel-

ligent automation and increased interconnectedness can lead 

to new paradigms for a more proactive approach in forecast-

ing and monitoring, as well as responding in real time to 

epidemiological disasters.  

Epidemics management relies on and involves several ele-

ments and actors as illustrated in Figure 3. However the 

development and activities of these tend to be characterized 

by fragmentation and isolation, both vertical and horizontal. 

To deal with the complexity and scale of the challenge in a 

reliable manner, a holistic approach is required that would 

bring these different elements together in an integrated ef-

fort. The following sections outline the different elements 

and actors in epidemics modelling. 

 

Figure 3:   Actors and Elements of a Holistic Approach to “Big Modelling”. 

 

 

 

TECHNOLOGIES & STANDARDS

Large Scale Simulation, e-
Infrastructures, Cloud and HPC, Big 

Data Systems, 5G, IoT, Satelite

MODELS & SIMULATION

Agent-Based Models, Distributed Simulation and 
Interoperability, Multi-Scale and Hybrid 

Simulation, Analytical Models, Dynamic Data 
Driven Simulation, Complexity, Network Science

DATA

Databases, social media, web, media, 
IoT and sensor data, remote sensing

STAKEHOLDERS

Local  Authorities,  Governments, Global and 
Intergovernmental Organisations, Education 

and Research, Charities and Associations, 
Citizens



A. Stakeholders 

Models applied for prediction of outbreak target variables 

for an epidemic include the potential and realistic average 

number of secondary transmissions resulting from each in-

fected person (referred to as the basic and effective repro-

duction rates, respectively), the effectiveness of interven-

tions, and context-specific spreading patterns. Each variable 

shows significant variation across contexts and time, and 

better accuracy could be obtained in future health crises by 

increased collaboration and co-ordination of the different 

stakeholders involved [31]. 

However, disease outbreak dynamics are driven by a far 

greater number of variables than those typically included in 

epidemiological analyses. Through an integrated approach 

there is a need to overcome the modelling fragmentation 

among intervention stakeholders and remove the existing 

silos as defined for the stakeholder organisations and entities 

by their respective mandate:  

 by disease origin: naturally occurring diseases, acci-

dental releases and deliberate diseases; 

 by disease hosts: human, animal, environment; 

 by level of inclusiveness: global, multilateral, plurilat-

eral, bilateral, national;  

 by wider challenge drivers or megatrends: climate 

change, migration, refugees, displaced people, travel, 

transportation, meteorological forecasting, atmospheric 

transport modelling, conflicts, peacekeeping operations,  

humanitarian interventions, etc. 

Just to illustrate the model integration rationale for remov-

ing existing silos as defined by disease origin: a diverse and 

complex set of stakeholders arises depending whether an 

outbreak is natural, deliberate or accidental, whether an af-

fected countries’ Ministry of Health, the World Health Or-

ganisation, the UN Secretary General’s investigation mech-

anism, a UN Security Council mandated entity, a Biological 

Weapons Convention organ or an amalgamate entity blend-

ing the above institutions will play the leading role under 

any of those disease origin scenarios. This difficult-to-

predict mosaic of actors is further complicated if an out-

break crosses an international border, when it is inevitable 

that sovereign states will implement different response poli-

cies under different political milieus. The difficulty in dis-

tinguishing between different types of event during the ear-

liest stages of an outbreak means it is unlikely that medical 

practitioners will initially consider a deliberate or accidental 

outbreak [16]. A bioterrorism event can mimic the charac-

teristics of natural outbreaks. Confusion and chaos makes 

providing effective care difficult [17]. In the case of a delib-

erate outbreak on the other hand, considerable political and 

other pressures may be present, and key stakeholders’ polit-

ical focus on containing an outbreak may be secondary to 

other strategic political interests.  

A challenging issue related to stakeholders are affected pop-

ulations and engagement with them, often referred to as 

‘community engagement’. As illustrated in Figure 2, com-

munity engagement exists at the preparedness, response, and 

recovery phases. While all elements of the response can be 

broken down into constituent parts, disentangling communi-

ty engagement at each phase is crucial if its function is to be 

considered holistically. At all phases, it includes: a) risk 

communication and education, b) routinized dialogue mech-

anisms for community feedback, c) robust participatory 

functions (not limited to community taskforces, local train-

ing and employment, and community contact tracing), and d) 

external relations and media outreach. The relative focus on 

each of these constituent functions is weighted depending on 

which phase the process is in, and transitively, this core 

Table 1: Potential Data sources for modelling epidemics. 

Category Datasets 

Epidemiologi-

cal, medical 

and hospital 

data 

 Susceptible individuals (i.e. plausible 

contacts of confirmed cases) 

 Infected individuals 

 Blood samples and case data during 

outbreaks  

 RNA sequencing of virus strains and 

phylogenic analysis 

 Available health information systems 

(HIS) databases (e.g. District Health 

Information System II databases) 

 Hospital admissions 

 Deaths 

 Phylogenic information (DNA sam-

ples) 

 Control measures effectiveness effect 

(e.g. transmission rate reduction) 

 Drug and vaccine clinical trials 

 Biobank of strains of virus (e.g. Ebola) 

 Individual cases: patient virus strain, 

location, district, onset and outcome 

 Transmission chains 

Clinic /  

Family Doctor  
 Online records and medical databases 

 Surveillance of emerging cases 

 Interventions  

 Education 

Population  Demographics 

 Socioeconomic 

 UN data and statistics 

 National bureau of statistics 

 Poverty levels 

Travel  

mobility 

 IATA and passenger databases for air 

travel 

 Port and shipping databases 

Weather / 

Climate 
 IPCC (Climate Change) 

 Earth System Modelling Framework 

Remote Sens-

ing 

 Urbanisation 

 Deforestation 

 Land use change 

Geographic 

Information 

System 

 Satellite  

 Mapping 

 Air photography 

 Regional clusters  

Digital surveil-

lance  
 Social media (e.g. twitter, WeChat, 

LinkedIn, etc) 

 Internet search data 

 Online surveys 

Internet of 

Things (IoT) 
 Networked devices 

 Mobile services (e.g. location services, 

medical information systems) 

 City infrastructure, Vehicles 

 



component of outbreak response is inherently dynamic in 

both type and scale. Furthermore, depending on the context, 

affected communities can range from relatively homogenous 

to extremely heterogenous. Particularly in highly dynamic 

and heterogenous societies, or those without clear and stable 

trust in existing formal governance, power mapping of af-

fected communities is notably challenging, and community 

engagement activities are subsequently extremely difficult 

to appropriately tailor and implement. Nonetheless, accu-

rately anticipating and efficiently identifying these interven-

tions and their relative efficacy has an immense impact on 

the modelling outcome. Even when response architecture 

has been established and all key activities are online, poor 

and ineffective community engagement can and does result 

in a failure to contain an outbreak. Transitively, even if it 

took some time to identify an outbreak and mount a robust 

response, effective community engagement resulting in full 

consent amongst affected communities for surveillance, 

isolation, and contact tracing activities could conceivably 

end a significant outbreak such as the (ongoing at the time 

of writing)  2018- North Kivu, DRC Ebola outbreak after 

only two or three waves of transmission [59]. 

B. Data 

Forecasting and monitoring of actual and potential out-

breaks relies heavily on the availability of data.  The World 

Health Organisation (WHO), The Global Health Security 

Agenda (GHSA), the UN, the Institute of Health Metrics 

Evaluation (IHME), the Global Infectious Diseases and Epi-

demiology Network (GIDEON), the International Society 

for Infectious Diseases, the Infectious Diseases Data Obser-

vatory (IDDO), and the Centers for Disease Control and 

Prevention (CDC) are some of the organisations maintaining 

pertinent databases and that actively monitor and report on 

potential disease outbreaks [31] .  

Surveillance data are crucial in order to rapidly detect, re-

port and respond to outbreaks (see Table 1). Emerging tech-

nologies such as satellite remote sensing, IoT, and mobile 

phone technologies have significantly enhanced surveillance 

capabilities and have enabled the development of participa-

tory surveillance systems that can provide rich, high resolu-

tion crowdsourced data directly from the point of care, 

whether from local healthcare workers or even from affected 

individuals or families [30][37] e.g. [62][63][64]. The latter 

are crucial as they not only augment our understanding of 

the situation but they can be utilized to dynamically adapt 

the models enhancing their accuracy and reliability in real 

time. Improving performance and accuracy of predictive 

modelling is a force multiplier which allows limited re-

sources to be used more effectively.   

However, despite these developments, data collection and 

management during a crisis remains a profound challenge. 

Even data management internal to a response that has been 

operating for many months can be a daily struggle: missing 

or mis-reported data is common, which is exacerbated by 

the myriad agencies and individuals who are responsible, or 

take responsibility for, collecting and reporting data [60]. To 

aggravate this problem, basic data collection and manage-

ment architecture and standardized epidemiological analyses 

often do not exist, and where they do, they are often inade-

quate [60]. While efforts like the rollout of District Health 

Information Systems 2 (DHIS2) are slowly improving 

health facility-based surveillance, in many countries, health 

facility-based surveillance is still done in a paper-based ad-

hoc way, and very few health facilities have efficient, robust, 

and accessible surveillance databases. As a result, in many 

countries, the timely and reliable aggregation of surveillance 

data and subsequent automation of epidemiological analyses 

is currently not possible with available infrastructure [59]. 

Often, reliable databases on key components of epidemic 

analysis and prediction outside of health facilities are even 

more difficult to source, particularly sociological analyses 

that underpin the success of many epidemic response inter-

ventions. 

While in time routinizing the collection and analysis of 

health facility-based surveillance will become possible due 

to development of health systems, and will represent foun-

dational importance to the preparedness-phase success of 

any Big Model Platform, reliable data linkages with re-

sponders will remain fundamental to the resolution and 

breadth of available epidemic-specific data for the response 

phase. This is particularly true when considering the im-

portance of data sources that exist outside standard epidemi-

ological sources, such as social science research, which are 

often not collected or understood prior to the declaration of 

an outbreak and the response to it. 

As the data grow in size, resolution and sources so does the 

need to integrate them to enable contextual analytics. In-

deed, any effort towards holistic decision support epidemics 

should start with data integration and fusion. 

C. Models and Simulation 

The effectiveness of response to newly emerging events is 

supported by a rapid targeted deployment of countermeas-

ures [24]. Modelling and Simulation can assist in under-

standing characteristics of an outbreak and increase the 

chance of limiting the spread and intensity of its impact. 

Modelling can be incorporated to guide responses into out-

break events before, during and after the event takes place 

(Figure 1) providing input into decisions such as interven-

tion types through the use of optimisation and what-if analy-

sis. Key model outputs relate to the intensity and dispersion 

of an outbreak including the probability an infection will 

invade a population, spread patterns, expected number of 

cases, and estimations of the efficacy of interventions [23].  

Outbreaks particularly the 2013-2016 West Africa Ebola 

epidemic which was extremely severe in terms of casualties 

and scale as well as influenza outbreaks such as SARS and 

Avian influenza instigated an intensive effort into research 

of tools and methods to obtain more useful tools that lever-

age developments in conceptualisation of intelligent and 

customized modelling using diverse sources of information 

and big data. Several approaches have been developed based 

on complexity theory and network science, mathematical 

approaches and agent-based modelling [23][25][26][27][28] 

[29].  

From those the latter is the most promising and suitable to 

deal with the granularity of data available and the need to 

aggregate and disaggregate simulation inputs and outputs, as 

discussed in section I [22]. Agent based modelling tech-

niques provide a capability to develop heterogeneous repre-



sentations of complex systems such as populations and in-

teractions of different pathogens and other variables such as 

mobility, diversity of viruses and effectiveness of vaccina-

tion. Agent-based models can capture behavioural elements 

that are difficult to predict. An example of such an element 

is security. For example, any modeling of the 2018- North 

Kivu, DRC Ebola response would have to consider the at-

tacks on healthcare workers and health facilities which led 

to an uptick in cases, namely because two Ebola treatment 

centres for confirmed case isolation in the outbreak epicen-

tre were temporarily taken offline, and because affected 

communities were thereafter even more hesitant to be seen 

to cooperate with the response, or feared for their security 

were they to be admitted at the later-rehabilitated Ebola 

treatment centres [59]. Forecasting of insecurity and conflict 

risks using artificial intelligence and big data is a nascent 

but increasingly studied field [65][66][67] and some prelim-

inary models have high statistical significance in explaining 

levels of violence using these mechanisms[68]. 

Despite these significant developments, the current state of 

the art of forecasting and predictive modelling infectious 

diseases unfortunately has failed to deliver the effective 

outcomes expected. This failure may be largely attributed to 

two major factors: the first is the grounding of models to 

data which affects the accuracy and reliability of the simula-

tions; the second is model siloing. We outline these in the 

next subsections. 

1) Dynamic Data Driven Simulation 

Given the complexity and contextual diversity of epidemic 

outbreaks it is intricate to model and predict their emergent 

properties before the event. During an outbreak the pre-

existing models themselves are not void but new rules, ini-

tial conditions and parameters need to be constantly provid-

ed to dynamically update and calibrate the models to ensure 

that they accurately reflect the real situation on the ground 

as it unfolds.  It is challenging to update and calibrate mod-

els in an outbreak that is ongoing because as well as data 

limitations and availability, interventions and other parame-

ters are dynamic. Reactive changes that occur during out-

breaks represented by dynamic model parameters provide 

better results than static approaches. 

The need for dynamic data driven simulations has been rec-

ognised in other domains too and there have been significant 

work in this direction culminating in the concepts of Info-

Symbiotic or Dynamic Data-Driven Application Systems 

(DDDAS) [10]. DDDAS provides an adaptive feedback 

loop framework that covers real time collection of data for 

model adaptation and new initial conditions. As ground real-

ities change-streaming data from sensors and external simu-

lations can be fed back to continuously refine the models 

and the simulations. Conversely, simulation outputs can 

guide data collection. These techniques enable advanced 

data-driven simulation capabilities that can provide more 

accurate analysis and prediction through dynamic augmenta-

tion of models with dynamic data inputs and can enhance 

understanding of how social systems respond to policy in-

terventions [11][12][13][14][15].   

In disease surveillance, data driven simulation has an addi-

tional benefit in anticipating spread to new locations before 

less developed areas report occurrence. The 2013-2016 

West Africa Ebola epidemic is an example where the infec-

tion was not detected in one country for several months 

leading to its eventual spread across national borders [33]. 

Because of the infrequency and uniqueness of events obtain-

ing a statistically significant set of validation data is a signif-

icant hurdle [34]. However, while it may not be possible to 

predict the onset of a new outbreak prior to a health facility 

or epidemiologists’ validation, anticipating its spread there-

after even from highly rural and otherwise poorly under-

stood localities. Furthermore, as real time data systems be-

come more ubiquitous and robust, it will become possible to 

highlight and make targeted assessments of areas without 

data visibility, simultaneously increasing the chances of 

identifying previously unidentified transmission, and en-

couraging the area’s integration with growing data systems. 

Info-symbiotic simulation can support validation and miti-

gate the impact of missing data. Data driven models that 

dynamically adapt as the situation unfolds have also been 

the focus of recent research in epidemics modelling, e.g. 

[35][36][38]. However more work is required to fully utilize 

and exploit the benefits of the info-symbiotic simulation 

paradigm. 

Most crucially, info-symbiotic systems presume robust data 

collection, availability, and accuracy, which, as discussed in 

section II.B, for epidemics is not currently feasible at the 

necessary detail or scale. The use of confidence intervals 

can constitute a solution to this problem, however the exist-

ing data quality would make the intervals too wide to relia-

bly or meaningfully inform decision making. It is also im-

portant to note that even if confidence intervals are made 

clear, the political exigency of modelling and the ease with 

which non-expert decision makers rely on modelling outputs 

suggests care must be taken until a degree of accuracy can 

be tested and assured.  

However, despite these challenges, holistic modelling and 

simulation still has conceptual strengths. Consensus on the 

utility and appropriateness of core concepts encourages ap-

preciation of the sheer complexity of disease outbreaks. It 

can thereby help inform improved responses to outbreaks 

now and in the near future, as well as guide ongoing im-

provements to global surveillance architecture until robust 

data is reliably available for Big Model Platforms as it will 

inevitably become [59]. 

2) Model Coupling and Distributed Simulation  

 

Epidemics occur in a complex system of systems with dy-

namic environments, evolving and adapting pathogens, and 

complex interactions between human and natural systems.  

As discussed in Section I, siloed approaches are not suffi-

cient to understand the dynamics of complex heterogeneous 

systems such as epidemics. While genetic algorithms can be 

used to predict the growth of the pathogens, and transport 

and logistics models can be used to study the movement of 

people and animals without integration the results will be 

simplistic. Systems-of-Systems modelling require integra-

tion of different models so that the entire set of actors and 

factors whose interplay creates the emergent dynamics of 

the system can be analysed in context (butterfly effect [38]). 

For epidemics, integration would allow the inclusion of fac-



tors that relate to the interdependence between society, bio-

logical systems, environment, locations, populations, gov-

ernance, policy etc. Furthermore, integrating different mod-

elling approaches can be managed to promote desirable 

properties in the resultant ensembles, in addition to quality 

and standardisation through following best practices, the 

diversity and correlations between models can enhance the 

combined forecasts. Ensemble methods that combine out-

puts from several other models have been utilized for epi-

demics modelling, e.g. [40][41][42]. 

 However, model coupling is a challenging task. Sub-

component models are of different types (numerical, dis-

crete event) and each is likely to operate at different scales 

(both spatially and temporally) and may even operate in 

different dimensions. This requires matching of models at 

syntactic and semantic levels as well as synchronisation and 

coordination of simulation components as different spatio-

temporal scales.   Coupling models also introduces challeng-

ing problems with regard to uncertainly related to the inter-

action of variability from the different model sources and 

the propagation of uncertainty through the models [20][21].  

Distributed Simulation does not only enable integration but 

would also support high simulation performance that is cru-

cial in large heterogeneous population models [43][44][44] 

[45].  

D. Technologies and Standards 

Standardisation is the key to data and simulation integration 

and interoperability. For the former significant progress has 

been made in the last decade in the context of big data sys-

tems and web technologies [47][48][49][50]. Important ini-

tiatives have also been undertaken in the health domain (e.g. 

WHO SDMX-HD), climate and environmental modelling 

(e.g. OpenMI) and manufacturing (e.g. Industry 4 RAMI).  

On the other hand, simulation interoperability remains the 

holy grail of the Distributed Simulation community and 

despite significant progress that has been made in this direc-

tion (e.g. through the initiatives of SISO, the Simulation 

Interoperability Standards Organisation) solutions tend to be 

ad-hoc, domain specific or linked to specific technologies.    

III. A MODEL PLATFORM FOR HOLISTIC EPIDEMICS 

MANAGEMENT  

To support “Big Modelling” and managing of epidemics a 

computational framework should be able to interlink people, 

models and simulations, data, and different types of services 

including training across borders and scientific disciplines, 

including social science disciplines. The system should as-

sist stakeholders to monitor and predict epidemic events by 

providing insight into the risks, vulnerabilities and interven-

tion scenarios. Predictive capacity can and should include 

not only preparedness-phase risk indicators but also re-

sponse-phase predictions, whereby geographic risk mapping 

is updated in real time as surveillance data is made availa-

ble. The platform should be based on a modular yet inte-

grated design philosophy, allowing the integration of addi-

tional models and data sources as they become available 

(space, sky, sea, ground earth and citizens observation data, 

new social science research and anthropological infor-

mation); thus, providing a powerful distributed collaborative 

environment linking models and data and engaging re-

searchers and stakeholders with different domain knowledge 

and expertise from different geographic locations.  

Such a platform goes beyond a conventional monolithic 

HPC/Cloud platform. It should encompass features of a ser-

vice oriented e-infrastructure to support collaboration on a 

global scale. The ability to scale up or down based on de-

mand alongside support for continuous sustainable opera-

tion. 

Figure 4 provides a bird’s eye view of the proposed platform 

with its components. The system provides all necessary 

support for the coupling of models at different spatio-

temporal scales and their efficient execution, data integra-

tion and analytics and fosters interoperability through stand-

ardisation of interfaces.      

A workflow engine drives the system and automates the 

various stages of data management and processing as speci-

fied by the user. A Graphical Workflow Programming envi-

ronment will enable users a drag & drop interface to create 

complex layered workflows. These workflows a then able to 

run as one of instances and output reports, or through the 

engine can be configured for continuous operation over an 

area of interest.  

A data management layer will perform all necessary data 

ingestion, cleansing, transformation, fusion, and co-

registration. The workflow engine will ensure the movement 

of the data to and from each component, snapshotting it 

within the database for provenance and data management. 

Αn integrated suite of custom tools built to match the output 

specifications of data from the different simulation scenarios 

 

Figure 4: Components of the Proposed Decision-Support Framework (Big Modelling Platform). 



will facilitate the dynamic visualisation and analysis of data 

in meaningful, interactive and accessible ways.   

The system leverages Cloud and HPC-in-the-Cloud technol-

ogies to deliver the required computational power and con-

figurations dynamically to power end users or stakeholder 

workflows. This goes beyond a naive utilisation of existing 

computational environments. System-of-systems simula-

tions and holistic analytics form highly heterogeneous 

memory and computationally intensive big data workloads. 

They require computational platforms that are highly auto-

nomic, adaptive, elastic, resilient, cost-effective, responsive, 

and scalable. 

Different stakeholders are working to interpret and opera-

tionalize response plans and policy with potentially slightly 

different, though complimentary, objectives. The platform 

should be able to support the different stakeholders through 

a continuous integration of services co-developed and co-

operated by researchers, technology providers, and commer-

cial vendors. These include modelling (Modelling-as-a-

Service), simulation (Simulation-as-a-Service), data (Ana-

lytics-as-a-Service) and training.  

IV. CONCLUSION AND FUTURE WORK 

The aim of the Big Modelling framework proposed in this 

paper is not to replicate past efforts or develop new models 

and standards, but to leverage existing work and develop a 

methodology, capability and platform for system-of-

systems-wide integration of existing and future models, 

simulations and data sources to facilitate decision making 

and governance-support. As new data systems and capabili-

ties come online, they can be integrated into the platform, 

which by design will adapt and grow according to changing 

contexts. In that respect at the early stage the framework and 

the platform is postulated with a restricted focus on 

• naturally-occurring, accidental and deliberate disease 

epidemics being a sub-system of global challenges that 

are conceptualized as complex adaptive systems;  

• governance-support as one aspect of epidemics interven-

tions from the wider toolbox of disease preparedness, re-

sponse and recovery; 

• modelling, in particular agent-based modelling, as one 

aspects of system-of-systems and complex-adaptive-

systems science and applied science. 

The novel systems-of-systems approach will support deci-

sion-making to a diverse stakeholders and users in relation 

to potential epidemic outbreak events (real time as events 

occur and through what-if analysis and prediction of likely 

outcomes in different scenarios). The Big Model Platform 

enables the seamless coupling of the constituent dynamic 

components of a complex adaptive system. The Big Model 

Twins, as cyber-physical systems modelling both the chal-

lenge and the intervention aspects are crucial enablers 

throughout all the stages of modelling, simulation, valida-

tion and testing. They could be extremely relevant in apply-

ing “stress testing” as an emerging new tool more and more 

frequently used in other system-of-systems areas like fi-

nance (post 2008 financial melt-down) [54][55][56] and 

nuclear safety and security (post 2011 Fukushima nuclear 

accident) [56]. The 360° system-of-systems-wide integra-

tion and coupling will lead to innovative governance support 

approaches in developing risk-management strategies and 

more broadly in assisting epidemic preparedness, response 

and recovery as an important subset of global challenge 

governance.  

A source of inspiration for the feasibility of enhanced mod-

elling collaboration should be the Functional Mock-up Inter-

face standardisation project run by the German and Europe-

an automotive industry [51]. Interestingly the automotive 

industry, a manufacturing characterized by strong competi-

tion, managed to launch and sustain an association, Pro-

STEP iViP that currently has 180 members from 20 coun-

tries. ProSTEP iViP maintains and constantly expands a 

network of like-minded organisations [52]. 

There are different options for achieving the integrated ap-

proach advocated and envisioned in this paper with a dis-

tinct possibility of blending different option elements as 

well, e.g.:  

1. Anchor the framework in WHO’s Health Emergencies 

Programme or its Joint External Evaluation Secretariat 

as a Big Modelling Interface in collaboration with and 

relying on the Global Health Security Agenda initiative. 

2. Initiate a collaboration project similar to the automotive 

industry’s Functional Mock-up Interface standardisation 

project. 

3. Leverage on the vision of the European Commission for 

large scale Research Infrastructures [58] and e-

infrastructures (European Open Science Cloud, EOSC 

[51]). 

Future work will pursue these options and will seek to de-

velop and operationalise the proposed framework.  
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